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ABSTRACT

We have described a challenging neural-network hardware
implementation that would mate a 64x64-pixel infhred sensor directly
on to a 3-dimensionally packaged set of neural processing chips with
parallel input for high speed image processing. We now describe two
enhanced schemes. In one the synapse (analog multiply device)
resolution has been increased from 7- to 8-bit without increasing the
silicon area but requiring low temperature (77K) operation. In other an
innovative chip is incorporated in place of the mated infrared sensor
array that permits detachtnent of the IR sensor without compromising
the input speed. This permits room temperature operation of the
processor for a projected image processing speed of a tera-operations
per second (TOPS). We compare the 7- and 8-bit synapse
architectures and provide the test results of the operation (linearity and
speed) both at low and room temperatures. Non linearity effects and
range compression issues are also discussed.

INTRODUCTION

Artificial neural networks, derived from their biological counterparts with their
inherent massive interconnectivity and parallel processing architecture, are specially
suitable for image and signal processing that requires feature classification/object
recognition, global optimization, and adaptive control [1]. When implemented in fully
parallel electronic hardware, they provide orders of magnitude speed enhancement [2].
VLSI-implemented neural network chips that are wired with nearly fill parallelism have
been shown to reduce processing time by orders of magnitude and are useful in a variety
of applications [2,3]. Basic building blocks of the neural network architecture are the
processing elements called “neurons” implemented as nonlinear operational amplifiers
with a sigmoidal transfer function, interconnected through weighted connections called



“synapses” implemented using circuitry for digital weight storage and analog multiply
(between input and stored weight value) functions [4,5]. Taking cue from biology of the
massive parallelism for image data input from retinas to cerebral cortex, the overall
effectiveness of the neural network hardware was enhanced via an innovative architecture
for a tight coupling between a sensor and the processing chips as was reported in the last
meeting [6].

This architecture consisted of mating a 64x 64 infrared (IR) image sensor to a
stack of 64 neural net ICS directly along edges, each with different stored weights. A
variety of image processing tasks could be performed in parallel at extremely high speeds
and in a highly compact package (=1 inch cube) [7]. The simultaneous requirements
dictated by such an application on the integrated neuroprocessing cube were:

(a) Cold temperature operation, IC stack being mated to the infrared (IR) imager
required to operate at -90”K.

(b) Low power dissipation of =2 watts because of the need to maintain cold
temperatures.

(c) High speed operation approaching 1000 Ilames per second, which translated into
a 4 MHz pixel image processing rate, and hence a <250 nanoseconds signal
processing speed.

These requirements had led to the design of low power digital-analog hybrid
circuits for implementation of the VLSI neural network ICS. Use of analog circuitry for
signal flow processing enabled a very compact, low power neural network realizdion [3].
1lowever, digital circuitry was also judiciously used for weight storage at synapses,
utilizing the static random access memory (SRAM) concept [4]. The 7-bit storage
register for the synapse was described [6, 8]. However, before its implementation, it was
deemed necessary to update the synapse circuit to have 8 bits of resolution. This was
accomplished not by adding additional similar circuitry for the 8th bit which would have
required nearly doubling of the circuitry on the chip and hence doubling the silicon real
estate, but by using an innovative concept of splitting the circuit into two, one part acting
as a vernier for the other. This significant design innovation resulted in a marked saving of
chip area as well as power. However, a trade-off was the reduction in signal dynamic
range because of the anticipated nonlinearity of the characteristics which was also
confirmed after chip testing.

The architecture, shown in Figure 1 (A), was dedicated to one IR imager array
mated to the processor and hence the requirement for low temperature (-77K) operation
of the neural net chips. While this implementation is still in progress at the titne of this
writing, in a parallel development it was decided to use an identical processor cube to
further enhance the architecture by detaching the IR sensor array from the neural
processing module (NPM). Therefore, a new chip (to be mated to the processor) was
designed to obtain image data from any type and size imager (say a 256x256-pixel array)



by rastering a 64x64 window along the image and feeding it to the processor with full
parallelism and without compromising the speed. This revised architecture is shown in
Figure 1 (B). Now it was no longer necessary for this processor cube to operate at 77K.
However, since the synapse design was originally optimized for low temperature
operation, it was imperative that its room temperature performance be satisfactory for
the new architecture to be viable.

The paper describes overall architectures of the two approaches and focuses on
the extension of the synapse resolution from 7- to 8-bit. Test results of the VLSI-
implemented NPM chip at room and cold temperatures are presented. A brief discussion
of the impact of 8-bit synapse design on the performance tradeoff is also given.

(A)

4!!!!!WCL’C
NEURAL

PROCESSING
MODULE (NPM)

(B)

Figure 1. The schematic views of the two 3D-stacked implementations. (A) The
3D Artificial Neural Network (3 DANN) that has an attached 64x64 IR detector
array. The lateral resistive layer (LRL) chip performs the gaussian blurring or
deblurring of the image depending on its programmed resistance values (1 O
kilo- to 10 meg-ohms). (B) The detector and neural conditioning module (NCM)
have been replaced by a column loading input chip (CLIC) that would raster a
64x64 window of a larger IR, visible, etc. images. The NPM cube is identical in
both implementations. Because of these changes, however, the two
motherboard designs with metal lines for bonding to the pads at the identical
packages are slightly different.



MODIFIED NEURAL NETWORK ARCHITECTURE

The stacked architecture promises a practical realization of three dimensional
electronic circuitry, offering unprecedented computational power in such a compact
package [7]. Figure 1 illustrates the two approaches using the same neural processing
module (NPM). Sixty-four thinned VLSI-implemented NPM chips will be stacked to
form a three-dimensional “sugarcube”. Using the bump bonding technique, either a 64x64
IR sensor array as per the original architecture or a newly designed Column Loading Input
Chip (CLIC) will be mated to the IC stack as per the second scheme. Each of the 64x64
output in the CLIC is brought out to a respective pad maintaining the same geometrical
constraints and is directly bump-bonded to connect to the respective inputs of the NP M
chips. Communication amongst the stacked ICS is made possible by providing meta bus
lines running across side planes.

Each NPM chip in the stack is identical and essentially consists of 64 input lines,
64 output lines, and a 64x64 synaptic array where each synapse provides a product of
the incoming analog signal with its digital stored weight as an analog output current. A
photograph of the NPM chip is shown in Figure 2. The individual outputs from 64
synapses along each of the 64 columns are summed on a chip and then for all the 64 chips
providing the final 64 output currents. Each synapse weight is electrically and

Figure 2, A photograph of the neural processing module (NPM) chip showing
the 64x64 array of 8-bit synapses along with analog incoming circuitry, and
digital weight loading and other control circuitry.



individually programmable under software control. This architecture allows flexibility in
the computational functionality. For instance, each of the 64 neural networks could look
at the same image window and convolve with different weight templates, or the entire
image could be divided into a set of 64x64 windows stored as weights with one incoming
pattern as a parallel convolver.

Offering high density and massively parallel “focal plane” processing capability,
these smart packages would be demonstrated for the fast frame seeker function involving
real time (64x64-pixel, at 1000 frames/s) image acquisition, recognition, and tracking.
Similarly, the digital weight storage for the chips is provided in parallel on all the 64 chips
by 64 input lines at a rate of 2 gigabits per second. Its compact footprint would further
complement the 64-chip cube consuming only about 2.5 watts of power during its data
processing operation [6]. Each column weight values on the 64 chips form a 64x64
template and the incoming 64x64 image is convolved with all 64 templates stored on the
NPM cube within a matter of 250 nanoseconds, giving 64 convolution outputs, hence the
unprecedented speed of about one teraoperations per second. Here an operation is defined
as one analog multiply-accumulate equivalent.

EIXCTRONIC DEVICE DESIGNS

NPM chips incorporating an array of 64x64 synapses along with other switching,
weight loading, and control circuitry were fabricated after innovatively modifying the
synapse design to increase its bit-resolution from 7 to 8. Our synapse designs are based
on a static random access memory (SRAM) architecture for digital loading of weights
combined with its digital-to-analog multiplication with an analog input signal giving an
analog current output, The chips were fabricated with a 64x64 array of a 120x120pm2
unit cell in a 1.2pm CMOS fabrication process.

~-llit Synapse Design

The 7-bit synapse circuit [6], shown in Fig. 3 (A), consists of a voltage-to-current
input, a 7-bit multiplying digital to analog converter (MDAC), and a 7-bit digital memory.
This type of synapse, with its on-chip storage of digital weights, allows a very simple
digital interface (as opposed to the need for refresh circuitry to update volatile analog
storage of weights) and has been successfully incorporated into a number of our
implementations [3]. The current realization utilizes single transistor current mirrors
rather than the cascode current mirrors of previous designs. This difference results in
higher speed and a more compact design at the cost of a possible decrease in circuit
robustness.
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Operation of a synapse cell is as follows. An input transistor, biased in the linear
region (Vdrain < Vgate - Vt), converts an input voltage (Vi~ applied to its gate into a

drain current (Iin) which is almost linearly proportional to Vin. This input current is then

multiplied by the stored digital word (weight) to produce the desired output current
(Iout). Multiplication is accomplished by conditionally scaling the input current Iin by a

series of current mirror transistors. For each current mirror, a pass transistor controlled
by one bit of the digital word conditionally allows current to be placed on a common
summation line. The bits in the digital word from LSB to MSB are connected to 1, 2, 4,
8, 16, and 32 current mirror transistors respectively so that the input current is scaled by
the appropriate amount. The resulting summation current is unipolar. However a current
steering differential transistor pair, controlled by the seventh bit of the digital word,
determines the direction of the output current, such that two-quadrant multiplication is
accomplished (-63 to +63 levels). The 7-bit digital memory consisting of 7 static latches
provides programmable, nonvolatile weight storage and is randomly accessible. One input
transistor circuit is coupled through current mirrors to all the synapses along one column
in the input synapse matrix (or row for output synapse matrix) because the current Iin is

required as input to all the synapses in that column (rows for the output).

8-Bit Synapse Desipn

The 8-bit synapse circuit shown in Fig. 3 (B) is obviously a departure from the
normal extension of the 7-bit synapse circuit. As one can visualize from Figure 3 (A), in
an ordinary extension to 8-bit synapse circuit the bits in the digital word from LSB to
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Figure 3 Digital-analog hybrid synapse cells for multiply-accumulate: (A) Circuit
diagram of a 7-bit (*64 levels) synapse cell; (B) Circuit diagram of an 8-bit
(tl 28 levels) cell. Current summing in an analog domain is obtained from
multiple synapse output nodes by connecting them to a common wire,



MSB would have to be connected to 1, 2, 4, 8, 16, 32 and 64 current mirror transistors,
respectively so that the input current is scaled by the appropriate amount, thereby
requiring additional 64 current mirror circuits for a total of 127 (63+64), nearly doubling
the transistor count.

Instead, as shown in Fig. 3 (B), two input transistors biased in the linear region are
used to convert the common input voltage Vin into two input current values that have a
16:1 ratio using two appropriate bias currents given by vbi~~ and VbiWlrespectively. The
bits in the digital word for the higher current circuit (right side) are accordingly connected
to 1,2, and 4 current mirror transistors providing steps of 16*Iin, Complementing this,
the lower current (left) side has 1, 2, 4, and 8 such current mirror circuits providing the
vernier type steps of Iin filling in the required 15*Iin steps, Thus the complete range
from Oto+127*Iin is taken care of by a combination of the two sets of circuits with D 1
through D7 latches. The current steering circuit is identical to the one for the 7-bit
synapse with a latch D8 for the 8th bit, providing the complete range *127*Iin.

RESULTS

The circuits were sitnulated at 77 K temperature (using a PC version of PSPICE
simulator specially suitable for low temperature circuit modeling) and the design was
optimized. Because of the changes in the synapse design as a result of the increase in its
dynamic range from 7 to 8-bit, interesting tradeoffs have been made. The chip test results
have shown that the synapse performs the 8-bit weighting function at 77°K at high speed
(150ns) but with good linearity only within a narrower range of bias voltage (*1 volt).
On the contrary, the same design provides much better linearity at room temperature but
with a speed penalty (300ns). Figure 4 (A) & (B) show the measurement results at room
temperature and at 77 K, respectively. The readings for the negative weight values are
folded over for compactness of the graph and show up as -ve output currents. The
specification range for a linear output is restricted to an output current range of *8 VA for
a 1 volt input swing (2.5 to 3.5 volts). Further, measured data on power consumption of
the NPM chip exceeds the designed number of -2W for the 64-chip cube with 64x64
synapse-neuron circuit on a chip by about half a watt.

CONCLUSIONS

The high speed digital-analog synapse circuits have been designed and fabricated
as neuroprocessing module chips to operate at 77 K, and tested successfully for high
speed processing both at room and low tempemtures, Nonlinear effects have been taken
care of by restricting the range of input signals to 1 volt. A synapse multiply-accumulate
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throughput speed of =250 ns has been obtained which translates into about one
teraoperations per second (orders of magnitude higher than that of conventional
processing computers) for specialized high speeed image convolution functions. In
addition, tests have shown that the total power consumption for the NPM with 64 chips
would be about 2.5 watts under the worst operating conditions. These results project
that when itnplemented as a ‘sugar cube’, it will perform the inner-product image
convolution and template matching operation at extremely high speeds of a teraoperations
per second. Such a powerful computing engine combined with a versatile SIMD machine
(a CNAPS board) interfaced with a Pentium Pro machine is being targeted for field
demonstration on IR and visible images of BMDO interest for object recognition,
discrimination and tracking in real time.
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Figure 4. (A) Room temperature and (B) Low (77 K) temperature characteristics of an 8-
bit synapse [output vs. digital weights] on the neural processing module (NPM) chip.
LiIlearity is maintained within the specification range (Vbi~S= VMIR = +1 volt).
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